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I
SLENDER, TWO-DIMENSIONAL BODIES HAVING

I MINIMUM TOTAL DRAG AT HYPERSONIC SPEE)S

Iby
ANGEID MIELE(' and ROBERT E. PRITCHARD()

SUMMARY

IThis paper considers the problem of minimizing the total drag (sum

of the pressure drag and the friction drag) of a slender, two-dimensional,

symmetric body at zero angle of attack in hypersonic flow under the as-

J sumption that the distribution of pressure coefficients is Newtonian and

that the friction coefficient is constant. After the condition that the

I pressure coefficient must be nonnegative is accounted for, the minimal

problem is solved for arbitrary conditions imposed on the thickness, the

enclosed area, and the moment of inertia of the contour under the assump-

tion that the length is free. It is shown that, if convenient dimension-

less coordinates are employed (that is, if the abscissa and the ordinate

are normalized with respect to the length and the semithickness), the to-

tality of extremal arcs is composed of a two-parameter family of solutions.

It is also shown that each extremal arc involves at most one corner point

j and, hence, two subarcs: one of these is characterized by a positive pres-

sure coefficient and is called the regular shape; the other is characterized

3 by a zero pressure coefficient and is called the zero-slope shape. Thus,

I (*)Director of Astrodynamics and Flight Mechanics, Boeing Scientific
Research Laboratories.

S()Staff Associate, Boeing Scientific Research Laboratories.
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two classes of bodies can be identified: (1) bodies composed of a regular

shape only, and (II) bodies composed of a regular shape followed by a con-

stant thickness contour.

Particular attention is devoted to solutions for which either one or

two of the quantities under consideration are prescribed. If only one

quantity is given (the thickness, the enclosed area, or the moment of inertia

of the contour) the extremal arc is a single curve of class I regardless of

the friction coefficient. On the other hand, if two geometric quantities

are given (the thickness and the enclosed area, the thickness and the moment

of inertia of the contour, or the enclosed area and the moment of inertia

of the contour), a one-parameter family of extremal arcs exists; the pa-

rameter, called the friction parameter, is proportional to tU. cubic root

of the friction coefficient and is related to the quantities which are pre-

scribed. Depending on the value of the friction parameter, two distinct be-

haviors are possible. If the friction parameter is subcritical (smaller than

a certain critical value), the solution is of class I; if the friction pa-

rameter is supercritical (larger than a certain critical value), the solution

is of class II with the transition point from the regular shape to the con-

stant thickness contour shifting forward as the friction parameter increases.

For all of the cases considered, analytical expressions are derived for the

optimum shapes, the thickness ratios, and the drag coefficients.

I
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1. INTRODUCTION

The problem of minimizing the drag of slender, two-dimensional bodies

in hypersonic flow has attracted considerable attention in recent times.

With particular regard to the pressure drag, general solutions have been

I obtained in Ref. 1 under the assumption that the pressure distribution is

Newtonian and that, among the geometrical quantities being considered (the

I thickness, the length, the enclosed area, and the moment of inertia of the

contour), two are prescribed and the remaining two are free. These solu-

tions have been extended in Ref. 2 to cover the case where three of these

quantities are given and only one is free.

While the investigations of Refs* 1 and 2 neglected the friction' drag,

I it should be noted that there exist practical values of the thickness ratio

for which the friction drag may have the same order of magnitude as the pres-

sure drag. Therefore, it is of interest to reinvestigate the problem of the

I optimum slender shape from the point of view of minimizing the total fore-

body drag (sum of the pressure drag and the friction drag) for any number

of conditions imposed on the thickness d, the length 1, the enclosed area A,

and the moment of inertia of the contour M. This is the problem considered

in the present report in connection with the following assumptions:

(a) the body is slender; (b) the distribution of pressure coefficients is

Newtonian; and (c) the friction coefficient is constant along the contour.

The corresponding axisysmetric problem is analyzed in Ref. 3 for any number

of conditions imposed on the diameter, the length, the wetted area, and the

volume.
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2. MINIMUM DRAG PROBLEM

Consider a two-dimensional, symmetric airfoil at zero angle of attack

in a hypersonic flow, and denote by x a coordinate in the flow direction,

y a normal coordinate, and y the derivative dy/dx. Under the slender body

approximation y2 << 1, the assumed Newtonian distribution of pressure coef-

ficients simplifies to Cp a 2y2o Consequently, the drag per unit span of

that portion of the body which is included between stations 0 and x is given

by

D(x) =-+ dx 
(1 )

where Cf is the friction coefficient, assumed constant. The corresponding

values for the area enclosed by the contour and the moment of inertia of

the contour are given by

0x 0x yd

A(x)-2f ydx, M (x)-2f y2 dx (2)

After the definitions 7

,4q• , (3)

are introduced, differentiation of both sides of Eqs. (1) and (2) with re-

spect to the independent variable leads to the following differential con- 7

straints:
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I
Cf

I

-y =0 (4)

. 2

3Since the requirement that the a&tope be nonnegative everywhere can be ex-

pressed as

p . 2 0 0 (5)

I
where p denotes a real variable, the differential system composed of Eqs. (4)

and (5) involves one independent variable (x), five dependent variables

r (y, a, $, y, p), and one degree of freedom. In this connection, after as-

suming that

xi 'yi 1 ai01i .ia° (6)

I
and that some, but not all, of the remaining state variables are given at

I' the final point, one can formulate the minimum drag problem as follows:

In the class of functions y(x), &(x). D(x), y(x), p(x) which are consistent

with the differential constraints (4) and (5) and the initial conditions (6),

I find that special set which minimizes the difference AG * Gf .i, wuere

I
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3. NECESSARY CCWDIDTONS

The previous problem is of the Mayer type with separated end conditions.

Consequently, after the Lagrange multipliers X through X4 are introduced

and the fundamental function is written as (Refs. 5 and 6)

,- .43( - -f) + Y0-,).+,(3 -2) + )4(j_-p 2) (7)

the extremal arc in described by the following Euler-Lagrange equations:

V - 3•1y - - - 23'

.0(8

0.

0 ).p

the second, third, and fourth of which can be integrated to give

x i -acI , X 2 ='~ C2 '3 . c C

where C, through C are constants. Furthermore, after it is observed that

the fundamental function does not contain the independent variable exPli-

citly and after Eq. (8-5) is accounted for, the following first integral can

be established:
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- iC C2Y + C~y 2 , C (10)

where C is a constant.

Corner conditions. As the fifth Euler equation indicates, the extre-

eal arc is composed of the subarea

X4 = 0 and/or p a 0 (11)

Along the former subarca, called regular shapes, the pressure coefficient

is always positive as long as p is real. Along the latter subarea, called

zero-slope shapes, the pressure coefficient is always zero. The junctions

between the subarce must be studied with the aid of the Erdmanni-eierstrase

corner conditions. They require that the integration constants C1 , C2 , C3 , C

have the same value for each of the subarcs composing the extremal arc and

that(*)

&)* = 4 - 3C•) 0o (12)

where A(..*) denotes the difference between quantities evaluated after and

before the corner point. A mathematical consequence of these equations

are the relationships

A4 - a - 0 (13)

(*)Eq. (12-1) is a consequence of the first integral (10) and the con-

tinuity of the integration constants.
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I

which, if combined with Eqs. (n), imply that

X4 * 0 (3L4)

before and after a corner points

End conditions. The end conditions are partly of the fixed end-point

type and partly of the natural type. The latter must be determined from

the tranaversality condition

[ cd + (C1 + 1) da + C2d + C3dy + (X4-3C1  )dy].0 (15)

which must be satisfied for every system of differentials consistent with

the prescribed end conditions; in particular, it implies that C . - 1.

If the length is free, the tranaversality condition yields C u O. On

the other hand, if either the enclosed area or the moment of inertia of the

contour are free, the transversality condition leads to C2 a 0 and C3 a 0,

respectively. Finally, if the diameter is free, the tranevermality condition

leads to

(w4w u 3wa)f e ( i16)

which, if combined with the Walr-lAgrange. equation (85,implies that

X ~t . if . o01
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Consequently, if d = 2yf denotes the diameter, the first integral (10)

yields the additional relationship

SCf d d2

c + T " c 2  "c 3 " o (18)

At this point, it is convenient to separate the discussion into two

basic problems: problems where the length is given and problems where the

length is free. As Eq. (1) shows, problems of the first kind are char-

acterized by the fact that the friction drag is independent of the shape so

that the contour which minimizes the total drag is identical with that which

minimizes the pressure drag. Since shapes of minimum pressure drag have

been fully discussed in Refs. 1 and 2, these problems are not considered

here. Thus, the analysis is restricted to problems of the second kind, in

which the length is free. The class of problems in which the length is free

contains several subclasses which depend on the number of quantities that are

specified. Among these subclasses, the following are considered here:

problems in which one geometric quantity is given and problems in which two

geometric quantities are given. For these problems, simple manipulations

lead to the results which are sumnarized in Table 1 where two types of re-

lations are indicated: those obtained from the traneversality condition and

those obtained by combining the results of the tranaversality condition with

the Euler-Lagrange equation (8-5) and the first integral (10).

Legendre-Clebsch condition. The Legendre-Clebsch condition indicates

that the drag is a minimum if the following inequalities are satisfied every-

where along the extremal arc:
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S0 , along the regular shape
(19)

4 c 0 , along the zero-alope shape

Switching function. From the previous discussion, it appears that the

Lagrange multiplier X plays an important role in determining the composition

of the extremal arc. If the terminology of control theory is employed, this

multiplier can be called the switching function; its properties are as fol-

low@:

- 0 , along the regular shape

S0 ,' along the zero-slope shape (20)

•4"0, at a corner point

-f



4. GEONETY OF THE EXTRDEKAL ARC

In the previous section, the necessary conditions to be satisfied by

the extremal arc have been stated. In this section, several general conse-

quences of these equations are derived referring, for the sake of brevity,

to the minimum drag problem (C1 m - 1) with the length unspecified (C a 0).

In order to facilitate the analysis, the following dimensionless coordinates

are introduced:

ux/t, 1 2y/d (21)

together with the definitions

K2 u C2 d/Cf , K3 - C3d 2/2C f (22)

With these coordinates, the first integral (10) reduces to the form

73 1 -K 2 1 - K3 If (23)

where T a d/t denotes the thickness ratio and j1 the derivative d/dý.

Basic inequality. The application of the above first integral at

the end points of the extremal arc indicates that the terminal values of the

slop, are given by



12

(21)

S113
'f (1 - K2 -K

From the first equation, it is apparent that the optimum body is sharp-

nosed. Since the final slope (and, hence, the final pressure coefficient)

must be nonnegative, one deduces from the second equation that the follow-

ing basic inequality must be satisfied,

1-K 2 - K3 2 0 (25)

Switching function. Since each extremal arc may involve more than one

subarc, it is of paramount importance to calculate the distribution of the

switching function; in nondinensional form, this function can be defined as

d* (26)

For the regular shape, it is known that a a 0. For the zero-slope shape, it

is known that * 0 and 1 u conast. Consequently, the Ealer-Lagrange equation

(8-1) reduces to

< .. K 2 - 2Y3 ¶ (27)

T

which, in the light of the initial conditions (20-3), admits the particular

integral
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i (K - (x+ 2 ) (• -3%) (28)

I in which the subscript c refers to a corner point.

Sequence of subarcs. The next step is to determine the appropriate

sequence of subarcs. First, it is observed that the extremal arc cannot

start with the zero-slope shape I - 0: the equation of this shape would

be incompatible with the first integral (23). Thus, if it is assumed that

i the extremal arc starts with a regular shape, the next questions to be in-

vestigated are: (a) whether a transition to a zero-slope shape is possible;

I and (b) if so, whether a further transition back to a regular shape may occur.

i Concerning the first question, the corner condition (14-2) and the first in-

tegral (23) show that the transition from the regular shape to the zero-slope

1 shape is possible if the following relationship is satisfied:

S1 - K2 - Ko3 0 (29)

T
With regard to the second question, Eq. (28) shows that, since the switching

function varies linearly with the abscissa along the zero-slope shape, it

can only vanish at one point: the corner point between the regular shape

and the zero-slope shape. Thus, no regular shape may follow the zero-slope

shape so that the equation of the latter is I = 1. Furthermore, because

of Eq. (29) and the properties of the switching function, the presence of

a zero-slope shape requires that

(30)

K2 + 2K3 >_ 0

I
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Since no more than one corner point and two subaros may exist, the totality

of extremal arcs consists of two classes of bodices (I) bodies composed of

a regular shape only, and (II) bodies composed of a regular shape followed

by a constant thickness oontour. These bodies are represented symbolically

by

Class I s ' = 0

Class II o a -. a 1

Family of solutions. Since the most general type of extremal arc is

of class II, its geometry can be described by the equations

(1 - K21 - KT1i)-' 3 dn
(1 fl K 11 --K T6-113 dl) (32)

where 9. denotes the abscissa of the transition point. Bodies of class I

can be obtained from bodies of class II by means of the formal substitution

"* 1; it should be noted, however, that the corner condition need not be

satisfied at this special point. In a functional form, Eqs. (32) can be re-

written as

TK%9%9 K9 K3 (33
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I
so that, after this relationship is combined with either of the relationsI

Class I : 9c 1

C(34)

Class II : 1 -K 2 - K3 - 0I
it is seen that a two-parameter family of optimum bodies exists.

For particular types of boundary conditions, considerable simplifica-

tions are possible. Thus, if the enclosed area is free (K2 a 0) or the

moment of inertia of the contour is free (K3 a 0), the number of independ-

ent parameters is reduced by one. An analogous remark holds for the case

where the thickness is free, since K2 + K3  1. In conclusion, the number

of independent parameters governing the solution depends on the number of

geometric quantities other than the length which are prescribed. If three

quantities are prescribed, the problem admits a two-parameter family of so-

lutions. If two quantities are prescribed, the problem admits a one-

parameter family of solutions. Finally, if only one quantity is prescribed,

the problem admits a zero-parameter family of solutions, that is, the geometry

of the extremal arc in the gI)-plane consists of a single curve regardless of

the value of the friction coefficient. In connection with problems where

either one or two geometric quantities are prescribed, the set of dimension-

less boundary conditions is indicated in Table 2 along with the dimensionless

switching function at the final point, the slope of the extremal arc at the

final point, and the number of independent parameters governing the solution.
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5. SOLUTION OF THE BOUNDARY VALUE PROBLU4

In this section, a general method for determining the unknowns ap-

pearing in Eqs. (32) is presented. The analysis in facilitated if several

nondimensional integrals are introduced. If the cubic root of both sides

of Eq. (23) is extracted, if the variables are separated, and if an inte-

gration over the regular shape is performed, the following result is

obtained:

W -; r I d(co' K29 Y) (35)

where

*d/1 (36)

denotes the thickness ratio and Id the nondimensional integral T

I de. K2, K) (1 - - K )-11 dI 7 (37)

Furthermore, by simple manipulations, the area enclosed by the airfoil

and the moment of inertia of the contour become

Arid2 = IA(co K2 f K13)

(38)

her/de . ]9, X2, K) J

where J
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I )1(1 - 1) (1 - K2 1 - K3V2)"_ 3 dj
I f ((g - K I - K -31f) 3 dli

1 (39)

SIH(c, K2, M ) ?fg1 - 0. U ' - 7l) (1 - K 2  - K"31f djI c 2o

I For a given friction coefficient, the system composed of the five equations

S(34) through (36) and (38) involves the eight quantities

T 9, d, Is A, M, 9C9 K2 K3 (40)

which means that one particular optimum body can be determined if three

additional relationships are specified. For the boundary conditions con-

sidered in Table 2, these relationships are represented by any one of the

following sets:

Sd- Const -0, K2 = 0 , 3 = 0
A - Const 0, K2 - 1 , K " 0

I - Const = 0 K 2 ' 0 K (4 )

d - Const a 0 A- Const=0 K 3a0

d-Const a , M- Const =0, K2 = 0

A - Const 0, M - Const n 0 K2 1 -K
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Drag coefficient* After the boundary value problem has been solved,

the next step is to determine the drag of the optimum body. This drag can

be written as

d DP I -Lý)(42)

where IDp denotes the dimensionless integral

f " i~dg(43)

Now, if the drag coefficient is referred to the frontal area at x a I (that

in, if C a D/qd), the following relationship can be readily established

between the drag coefficient, the friction coefficient, and the thickness

ratios

.juf+ 2 -~(44)

Notice that, if both sides of Eq. (23) are multiplied by dt and integrated

over the entire length of the extremal arc, the relationship

T3 (45)
f

can be obtained. Consequently, after Eqs. (35), (44), and (45) are combined,
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one deduces that

CD I. (3 K , -C D I, (46
I

Drag ratio. Another interesting quantity characterizing the optimm

b ody is the drag ratio, that is, the ratio of the friction drag to the total

drag. Because of Eq. (44), this quantity is given byI
Cnf 4C f (47?)

I

which, in the light of Eq. (45), can be rewritten asI
CDf 2-- 

(48)I 3 - 2. , ,3IM



20

6. PARTICULAR CASES

In the previous sections, the minimum drag problem was solved in general

for arbitrary boundary conditions. Here, several particular cases are con-

sidered, and the associated optimum shapes are calculated. Two classes of

problems are considered: (a) problems in which only one geometric quantity

is prescribed and (b) problems in which two geometric quantities are pre-

scribed. Problems of type (a) are characterized by solutions of class I$

that is, solutions involving a regular shape only. Problems of type (b)

are characterized by solutions of either class I (regular shape) or class II

(regular shape followed by a constant thickness contour) depending on whether

the friction coefficient is smaller or larger than a certain critical value.

6.1. Given Thickness

If the thickness is given while the enclosed area and the moment of

inertia of the contour are free, the transversality condition leads to

K2 - K3 - 0. Since Eq. (30-1) is not satisfied, a zero-slope shape cannot

exist. Hence, the extremal arc is of class I, that is, involves a regular

shape only.

After setting g w 1, the equation of the regular shape (32-1) can be

integrated to give (Fig. 1)

(4.9)

meaning that the extremal arc is a wedge. Since Id - 1, Eq. (35) yields

the following value for the optimum thickness ratio:
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rIcf , / .l 2 6 Cc (50)

I
Consequently, Eq. (46) indicates that the drag coefficient per unit thiok-

I ness ratio squared is given by

D 1-5 (51)

I 1

i a result which, because of Eq. (48), has the following implication: the

friction drag of the optimum body is two-thirds of the total drag.I
1 6.2. Given Enclosed Area

If the enclosed area is given while the thickness and the moment of

1 inertia of the contour are free, the transversality condition leads to

K2  1, K3 - 0, and af - 0. Should a zero-slope shape exist, the switching

function would be zero at both ends of this subarc. However, because of

Eq. (28), this is only possible when gf a •. Since the length of the zero-

slope shape is zero, the extremal arc is of class I, that is, includes a

regular shape only.

For 9. = 1, the equation of the regular shape (32-1) can be integrated

to give (Fig. 1)

1 - ( )3/2 (52)

Since Id - 3/2, Eq. (35) yields the following value for the optimuam thickness

ratio:
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5F W- -. 0.84 Wr(53)

Finally, since IA a 3/5, Eq. (46) yields the following ai± drag coef-

ficientt

CD 8 .405 (54)

which, in the light of Eq. (48), has the following implications the friction

drag of the optimum body is five-sixths of the total drag.

6.3. Given Moment of Inertia of the Contour

If the moment of inertia of the contour is given while the thickness

and the enclosed area are free, the traneversality condition leads to

K2  O��~ K .1, and af 0 ., Should a zero-slope shape exist, the switching

function would be zero at both ends of this subarc. However, because of

Eq. (28), this is only possible when gf a go. Since the length of the zero-

slope shape is zero, the extremal arc is of class I, that is, includes a

regular shape only.

For to a 1, one can integrate the equation of the regular shape (32-1)

to obtain (Fig. 1)

where
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I
and where F and E denote the incomplete elliptic integrals of the first

and second kind, respectively. The associated argument e and parameter k

are defined as

ff(¶) -arc con dL:.1 + 1" km~i 3  (57)

I
Since Id - 3f(l), Eq. (35) yields the following value for the optimum thick-

I ness ratios

017$ (58)

SFinally, since I m 3/7, the minimum drag coefficient becomes

4 q f3 (l) - 2.788(5 9)

a result which, because of Eq. (48), has the following implications the

I friction drag of the optimum body is seven-ninths of the total drag.

6.•. Given Thickness and Enclosed Area

If the thickness and the enclosed area are prescribed while the moment

of inertia of the contour is free, the traneversality condition leads toI
I
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K3 a 0. The totality of extremal arcs is represented by a one-parameter

family of solutions of either class I (regular shape) or class II (regular

shape followed by 'a constant thickness contour) depending on whether the

friction coefficient is smaller or larger than a certain critical value.

The representation of the results becomes simple and immediate if a thick-

ness parameter and a friction parameter are introduced. These parameters

are defined by

K- A A (60)AK 7 9d• Kf -f d-' (60)

d d

and, because of Eqs. (35) and (38-1), can be rewritten as

K I AA(gc, K2 ) , Kf s Id(9c, K2) IA((C, K2) (61)

Bodies of class I. These bodies consist of a regular shape only and

are obtained for c a 1 and - cK2 ! 1. After Eqs. (32-1), (46), and (61)

are employed, the optimum shape, the thickness parameters the drag coefficient,

and the friction parameter can be rewritten as

1 K21) 213

1l ,K2)213

3 . - (3+ 2K2) (1- K2) 21

5K2 I - (1 - K 2)
(62)

J
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Elimination of the parameter K2 from these equations yields the functional

relationships

I -1 . Ki 1f). K "KT (Kf) 7-- (Kf) (63)

which are represented in Figs. 2 through 4 and are valid in the interval

I 0 i Kf _< 9A0. Incidentally, the solution corresponding to Kf - 1/2 is a

wedge,

Bodies of class II. These bodies consist of a regular shape followed

by a constant thickness contour and are obtained for 0 ! g C 1 and X2 a 1.

The shape of the optimum body, the thickness parameter, the drag coefficients

and the friction parameter are written as

2
*rK 1 (64)

C g

Kfm (3 2)

Elimination of the abscissa of the transition point from these equations

leads once more to functional relationshipsof the form (63) which are plotted

in Figs. 2 through 4 and are valid for 9/10 t Kf g -. As the friction pa-

rameter increases, the abscissa of the transition point moves forward, a cir-
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cumstance which is common to all of the boundary value problem analysed

here.

6.5. Given Thickness and Moment of Inertia of the Contour

If the thickness and the moment of inertia of the contour are prescribed

while the enclosed area is free, the tranovernality condition leads to K2 = 0.

As in the previous case, a one-parameter family of solutions exists. These

solutions are of bither class I or class II depending on whether the friction

coefficient is smaller or larger than a certain critical value* Once more,

the representation of the results is facilitated by introducing a thickness

parameter and a friction parameter. These parameters are defined as

K'rK . (65)
d d

and, because of Eqs. (35) and (38-2), can be rewritten as

K,.- aN(9c, K3) , Kf a ld(go, Y 9) Y o K3) (66)

Bodies of Class I. These bodies consist of a regular shape only and

are obtained for g - 1 and - -K, K3 1 Using Eq. (32-1)# one can express

the geometry of the optimum shape in the form

(67)

where

.1
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[(I K )+Vp ) Zcvk (68)
I

and where the upper sign is valid for K3 ! 0 and the lower sign, for K3 2 0.

The symbols F and E denote the incomplete elliptic integrals of the first

I and second kind whose arguments t and parameter k are defined as

*1 T kaj - (69)
(It, K) - arc coo k (69)

3

Because of Eqs. (46) and (65), the thickness parameter, the drag coefficient,

and the friction parameter can be expressed in the form

(~K3)

f v [3c, K " - (1 -K )2/3]

ElMination of the parameter K5 from Eqs. (67) and (70) yields functional

relationshpsof the form (63) which are plotted in Figs. 5 through 7 and are
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valid in the interval 0 ! Kf c 0.55. Incidentally, the solution correspond-

ing to Kf w 1/3 is a wedge.

Bodies of class II. These bodies consist of a regular shape followed

by a constant thickness contour and are obtained for 0 ! gc ! 1 and 3 - l.

After the shape of the optimum boay, the thickness parameter, the drag coef-

ficient, and the friction parameter are written as

K , l-- (71)
7c

Kf 39(l, 1) - g

elimination of the abscissa of the transition point from these equations

leads once more to functional relationships of the form (63) which are

plotted in Figs. 5 through 7 and are valid in the interval 0.55 i Kf !C.

6.60 Given Enclosed Area and Moment of Inertia of the Contour

If the enclosed area and the moment of inertia of the contour are given

while the thickness is free, the tranaversality condition leads to
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K2 - 1 - K,. Again, the extremal arc is represented by a one-parameter

family of solutions of either class I or class II depending on whether the

friction coefficient is smaller or larger than a certain critical value.

Once more, the representation of the results is facilitated if a thicksiess

parameter and a friction parameter are introduced. These parameters are de-

fined by

K A Kf UA (72)I

and, because of Eqs. (38), can be rewritten as

2 K (73)

Bodies of class I. These bodies consist of a regular shape only and

are obtained for - = 1 and - 2K 3 2 .1. If Eq. (32-1) is employed, the

expression for the optimum shape can be written as

h(OS K• :F h(j, •
n T, h(l, (74)

In the numerator of the above equation, the upper sign is valid for

r 9 (K - 1)/ 2K3, and the lower sign,, for 1 2 (K3 - 1)/ 2K 3 if 2! K3 1. 1;

for 1 2 K3 ýt 1, the upper sign is valid for all values of 1. With regard

to the denominator, the lower sign is valid when - k K3 k 1, and the upper
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sign, when 1 k Y • - 1. The definition of the function h(1 K 3 ) which

appears in Eq. (74) is given by

h(J9 K3) = T +F(pf, k) - E~fp, k(3

where the upper sign is valid for - z K3 k 1, the lower sign is valid

for 1 2 2! - 1, and the quantities a, V, and k are defined as

x€• D5) + K5¢ 31) (1. - )1
(1 + K 3) 2 1

(76)

i(fT, K-) marc cos j + kJ•
+ 1-t

Finally, because of Eqs. (46) and (73), the thickness parameter, the drag

coefficient, and the friction parameter can be expressed in the form

K.

= ~[3- (1 K 3) Y -3, (77)

Kf "2

where
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IP(K 3) - 3 +/ [h(o9 K3) *h(l,19 K3]

(1 21(3(O (83 ~ ~(K3) "K3 ~. 1 3)[O K3) :Fh(l, KA)~15(8I

I and where the lower signs are valid for - k K• • 1 and the upper signet

for 1 2 K3 k - 1. Elimination of the parameter K from Eqs. (74) and (77)

Syields functional relationships of the form (63) which are plotted in Figs. 8

through 10 and are valid for 0 ! Kf ! 49/16.

Bodies of class II. These bodies consist of a regular shape followed

I by a constant thickness contour and are obtained for 0 ! to 1, K2 m 22

and K3 a - 1. After the shape of the optimum body, the thickness parameter,

I the drag coefficient, and the friction parameter are written as

K 4 (4 - g~)

(14 -5%

(79)

4 (4 - g)3
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elimination of the abscissa of the transition point from these equations

leads once more to functional relationships of the form (63) which are

plotted in Figs. 8 through 10 and are valid for 49/16 ! Kf

f1

1
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7. DISCUSSION AND CONCLUSIONS

From the previous analysis, it appears that, despite the generality

of the present problem, the method of solution is relatively simple and

has the merit of leading to analytical solutions in each of the six par-

ticular cases considered here. The main comments to these solutions are as

follows:

(a) For the general problem in which the length is free and arbitrary

conditions are assigned to the thickness, the enclosed area, and the moment

of inertia of the contour, the totality of extremal arcs is represented by

a two-parameter family of solutions if dimensionless coordinates are employed,

that is, if the abscissa and the ordinate are normalized with respect to

the length and the semithickness. Each member of the family is characterized

by a sharp leading edge. Furthermore, each extremal arc may involve at most one

corner point and, hence, two subarce. Of these subarca, one is characterized

f by a positive pressure coefficient and is called the regular shape; the other

is characterized by a zero pressure coefficient and is called the zero-slope

shape. Consequently, two classes of bodies can be identified: (I) bodies

composed of a regular shape only and (II) bodies composed of a regular shape

followed by a constant thickness contour.

(b) If only one geometric quantity is assigned (the thickness, the

enclosed area, or the moment of inertia of the contour), a zero-parameter

family of solutions exists (that is, a single curve). In all cases, the so-

lution is of class I, that is, consists of a regular shape only. In particu-

lar, if the thickness is given, the solution is a wedge, and its length is

such that the friction drag is 2/3 of the total drag. If the enclosed area
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is given, the complements of the ordinate and the abscissa obey a 3/2 power

law, and the optimum thickness ratio is such that the friction drag is 5/6

of the total drag. Finally, if the moment of inertia of the contour is

given, the solution is represented by a combination of elliptic integrals

of the first and the second kind, and the optimum thickness ratio is such

that the friction drag is 7/9 of the total drag.

(c) If two geometric quantities are prescribed (the thickness and the

enclosed area, the thickness and the moment of inertia of the contour, or

the enclosed area and the moment of inertia of the contour), a one-parameter

family of solutions exists. This parameter, called the friction parameter,

is proportional to the cubic root of the friction coefficient and is indicative

of the relative importance of the friction drag with respect to the pressure

drag. Depending on the value of the friction parameter, two distinct behaviors

are possible. If the friction parameter is subcritical (smaller than a certain

critical value), the solution is of class I and, therefore, involves a regu-

lar shape only. If the friction parameter is supercritical (larger than a

certain critical value), the solution is of class II and, therefore, in-

volves a regular shape followed by a constant thickness contour; in all

cases, the tra!-4-.tion point from the regular shape to the constant thickness

contour shifts forward as the friction parameter increases.

In closing, it should be noted that, if the limiting process Cf -0 0 is

carried out, the present solutions reduce to the inviscid flow solutions

already calculated in Ref. 1. It should also be noted that some of the opti-

MUm shapes obtained with this analysis are concave; consequently, these

bodies should be restudied using the Newton-Busemann pressure coefficient
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I
law; this, however, requires a more thorough understanding of the friction

I drag associated with the possible presence of free layers. Finally, when

the square of the thickness ratio becomes nonnegligible with respect to

one, the slender body approximation is violated; consequently, the problem

I should be reinvestigated using the exact Newtonian expression for the pres-

sure coefficient, that is, the sine square law.

I

I
I
I

!C

I

I
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Fig. 1. Optimum shapes for given values of the thickness, the enclosed
area, or the moment of inertia of the contour.
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Fig. 5. Optimum shapes for given thickness and moment of inertia of the
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